| ID/Version |
|
||||||||||||||
|
Sequence description from provider |
RecName: Full=Cryptochrome-2; | ||||||||||||||
| Provider | SWISS-PROT | ||||||||||||||
| Sequence |
Polypeptide
592
aa
|
||||||||||||||
| Source | |||||||||||||||
| Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
| Sequence references in MGI |
J:51295
Kobayashi K, et al., Characterization of photolyase/blue-light receptor homologs in mouse and human cells. Nucleic Acids Res. 1998 Nov 15;26(22):5086-92
J:57719 Miyamoto Y, et al., Circadian regulation of cryptochrome genes in the mouse. Brain Res Mol Brain Res. 1999 Aug 25;71(2):238-43 J:73655 Lee C, et al., Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001 Dec 28;107(7):855-67 J:87576 Lee C, et al., Direct association between mouse PERIOD and CKIepsilon is critical for a functioning circadian clock. Mol Cell Biol. 2004 Jan;24(2):584-94 J:92575 Okazaki N, et al., Prediction of the coding sequences of mouse homologues of KIAA gene: IV. The complete nucleotide sequences of 500 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries. DNA Res. 2004 Jun 30;11(3):205-18 J:99680 The FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group), The Transcriptional Landscape of the Mammalian Genome. Science. 2005;309(5740):1559-1563 J:101219 Harada Y, et al., Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3beta. J Biol Chem. 2005 Sep 9;280(36):31714-21 J:116444 Etchegaray JP, et al., The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem. 2006 Jul 28;281(30):21209-15 J:120341 Ohno T, et al., The negative transcription factor E4BP4 is associated with circadian clock protein PERIOD2. Biochem Biophys Res Commun. 2007 Mar 23;354(4):1010-5 J:122872 Siepka SM, et al., Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell. 2007 Jun 1;129(5):1011-23 J:147991 Ramsey KM, et al., Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009 May 1;324(5927):651-4 J:154857 Chen R, et al., Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell. 2009 Nov 13;36(3):417-30 J:161722 Kurabayashi N, et al., DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol Cell Biol. 2010 Apr;30(7):1757-68 J:177241 Ozber N, et al., Identification of two amino acids in the C-terminal domain of mouse CRY2 essential for PER2 interaction. BMC Mol Biol. 2010;11:69 J:179376 Lamia KA, et al., Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011 Dec 22;480(7378):552-6 J:194037 Yoo SH, et al., Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell. 2013 Feb 28;152(5):1091-105 J:196293 Hirano A, et al., FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell. 2013 Feb 28;152(5):1106-18 J:196953 Anand SN, et al., Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. J Neurosci. 2013 Apr 24;33(17):7145-53 J:198214 Barclay JL, et al., High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. Am J Physiol Endocrinol Metab. 2013 May 15;304(10):E1053-63 J:200446 Xing W, et al., SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature. 2013 Apr 4;496(7443):64-8 J:204645 Zhao WN, et al., CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat Cell Biol. 2007 Mar;9(3):268-75 J:205048 Richards J, et al., A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am J Physiol Renal Physiol. 2013 Dec 15;305(12):F1697-704 J:207239 Gao P, et al., Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length. J Biol Chem. 2013 Dec 6;288(49):35277-86 J:209472 Ono D, et al., Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat Commun. 2013;4:1666 J:209480 Zhang EE, et al., Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med. 2010 Oct;16(10):1152-6 J:209571 Goriki A, et al., A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol. 2014 Apr;12(4):e1001839 J:240095 Shi G, et al., Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function. Cell Rep. 2016 Feb 02;14(4):823-34 J:244975 Kriebs A, et al., Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8776-8781 J:255965 Jordan SD, et al., CRY1/2 Selectively Repress PPARdelta and Limit Exercise Capacity. Cell Metab. 2017 Jul 5;26(1):243-255.e6 J:273529 Wong JCY, et al., Differential roles for cryptochromes in the mammalian retinal clock. FASEB J. 2018 Aug;32(8):4302-4314 J:283196 Hirano A, et al., USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock. PLoS One. 2016;11(4):e0154263 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
|
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 01/06/2026 MGI 6.24 |
|
|
|
||