ID/Version |
|
||||||||||||||
Sequence description from provider |
RecName: Full=Eukaryotic translation initiation factor 2-alpha kinase 3 {ECO:0000305}; EC=2.7.11.1 {ECO:0000269|PubMed:16418533, ECO:0000269|PubMed:21543844, ECO:0000269|PubMed:21954288, ECO:0000269|PubMed:9930704};AltName: Full=PRKR-like endoplas | ||||||||||||||
Provider | SWISS-PROT | ||||||||||||||
Sequence |
Polypeptide
1114
aa
|
||||||||||||||
Source | |||||||||||||||
Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
Sequence references in MGI |
J:51759
Harding HP, et al., Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase [published erratum appears in Nature 1999 Mar 4;398(6722):90] [see comments]. Nature. 1999 Jan 21;397(6716):271-4
J:62257 Harding HP, et al., Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000 May;5(5):897-904 J:70005 Harding HP, et al., Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001 Jun;7(6):1153-63 J:76661 Zhang P, et al., The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol. 2002 Jun;22(11):3864-74 J:85958 Cullinan SB, et al., Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003 Oct;23(20):7198-209 J:99455 Harding HP, et al., Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000 Nov;6(5):1099-108 J:99680 The FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group), The Transcriptional Landscape of the Mammalian Genome. Science. 2005;309(5740):1559-1563 J:200066 Munoz JP, et al., Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 2013 Aug 28;32(17):2348-61 J:218003 Cullinan SB, et al., PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem. 2004 May 7;279(19):20108-17 J:222776 Carrara M, et al., Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling. EMBO J. 2015 Jun 3;34(11):1589-600 J:260006 Mounir Z, et al., Akt determines cell fate through inhibition of the PERK-eIF2alpha phosphorylation pathway. Sci Signal. 2011 Sep 27;4(192):ra62 J:278383 Balsa E, et al., ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2alpha Axis. Mol Cell. 2019 Jun 6;74(5):877-890.e6 J:292518 Huttlin EL, et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89 J:355657 Marciniak SJ, et al., Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. J Cell Biol. 2006 Jan 16;172(2):201-9 J:355658 Su Q, et al., Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation. J Biol Chem. 2008 Jan 4;283(1):469-475 J:355667 Wang P, et al., The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. J Biol Chem. 2018 Mar 16;293(11):4110-4121 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 03/18/2025 MGI 6.24 |
![]() |
|