ID/Version |
|
||||||||||||||
Sequence description from provider |
RecName: Full=Alkaline phosphatase, tissue-nonspecific isozyme {ECO:0000303|PubMed:10620060, ECO:0000303|PubMed:7789278}; Short=AP-TNAP; Short=TNAP {ECO:0000303|PubMed:7789278}; Short=TNSALP {ECO:0000303|PubMed:10620060}; E | ||||||||||||||
Provider | SWISS-PROT | ||||||||||||||
Sequence |
Polypeptide
524
aa
|
||||||||||||||
Source | |||||||||||||||
Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
Sequence references in MGI |
J:8897
Terao M, et al., Cloning and characterization of a cDNA coding for mouse placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7051-5
J:25249 MacGregor GR, et al., Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development. 1995 May;121(5):1487-96 J:28394 Waymire KG, et al., Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet. 1995 Sep;11(1):45-51 J:33620 Brown NA, et al., Induction of alkaline phosphatase in mouse L cells by overexpression of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1990 Aug 5;265(22):13181-9 J:39015 Narisawa S, et al., Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn. 1997 Mar;208(3):432-46 J:66842 Narisawa S, et al., Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol. 2001 Jan;193(1):125-33 J:77731 Hessle L, et al., Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9445-9 J:78130 Fedde KN, et al., Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res. 1999 Dec;14(12):2015-26 J:88444 Anderson HC, et al., Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol. 2004 Mar;164(3):841-7 J:99680 The FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group), The Transcriptional Landscape of the Mammalian Genome. Science. 2005;309(5740):1559-1563 J:173678 Yadav MC, et al., Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res. 2011 Feb;26(2):286-97 J:179862 Ciancaglini P, et al., Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res. 2010 Apr;25(4):716-23 J:199822 Street SE, et al., Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci. 2013 Jul 3;33(27):11314-22 J:233254 Narisawa S, et al., In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res. 2013 Jul;28(7):1587-98 J:287360 Bessueille L, et al., Tissue-nonspecific alkaline phosphatase is an anti-inflammatory nucleotidase. Bone. 2020 Apr;133:115262 J:292518 Huttlin EL, et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89 J:298347 Nakamura T, et al., Tissue-nonspecific alkaline phosphatase promotes the osteogenic differentiation of osteoprogenitor cells. Biochem Biophys Res Commun. 2020 Apr 9;524(3):702-709 J:306607 Sun Y, et al., Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature. 2021 May;593(7860):580-585 J:314086 Pinkerton AB, et al., Discovery of 5-((5-chloro-2-methoxyphenyl)sulfonamido)nicotinamide (SBI-425), a potent and orally bioavailable tissue-nonspecific alkaline phosphatase (TNAP) inhibitor. Bioorg Med Chem Lett. 2018 Jan 1;28(1):31-34 J:314565 Huesa C, et al., The Functional co-operativity of Tissue-Nonspecific Alkaline Phosphatase (TNAP) and PHOSPHO1 during initiation of Skeletal Mineralization. Biochem Biophys Rep. 2015 Dec 1;4:196-201 J:314754 Wennberg C, et al., Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res. 2000 Oct;15(10):1879-88 J:341423 Feng XY, et al., Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/beta-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage. Eur J Oral Sci. 2018 Feb;126(1):1-12 J:341424 Feng XY, et al., Msx1 regulates proliferation and differentiation of mouse dental mesenchymal cells in culture. Eur J Oral Sci. 2013 Oct;121(5):412-20 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 03/25/2025 MGI 6.24 |
![]() |
|