ID/Version |
|
||||||||||||||
Sequence description from provider |
RecName: Full=Histone deacetylase 1 {ECO:0000303|PubMed:9271381}; Short=HD1 {ECO:0000303|PubMed:9271381}; EC=3.5.1.98 {ECO:0000269|PubMed:10615135, ECO:0000269|PubMed:21960634, ECO:0000305|PubMed:30279482};AltName: Full=Protein deacetylase | ||||||||||||||
Provider | SWISS-PROT | ||||||||||||||
Sequence |
Polypeptide
482
aa
|
||||||||||||||
Source | |||||||||||||||
Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
Sequence references in MGI |
J:42359
Bartl S, et al., Identification of mouse histone deacetylase 1 as a growth factor-inducible gene. Mol Cell Biol. 1997 Sep;17(9):5033-43
J:66985 Laherty CD, et al., SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol Cell. 1998 Jul;2(1):33-42 J:67665 Zhang CL, et al., Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem. 2001 Jan 5;276(1):35-9 J:82069 Yang L, et al., An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B. Biochem J. 2003 Feb 1;369(Pt 3):651-7 J:84768 Alland L, et al., Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex. Mol Cell Biol. 2002 Apr;22(8):2743-50 J:87046 Zoltewicz JS, et al., Atrophin 2 recruits histone deacetylase and is required for the function of multiple signaling centers during mouse embryogenesis. Development. 2004 Jan;131(1):3-14 J:97578 Mejat A, et al., Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci. 2005 Mar;8(3):313-21 J:100129 Zhou Y, et al., The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol. 2005 Aug 9;15(15):1434-8 J:106935 Davis CA, et al., PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol Cell Biol. 2006 Apr;26(7):2626-36 J:113866 Fuks F, et al., DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000 Jan;24(1):88-91 J:114014 Vaute O, et al., Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res. 2002 Jan 15;30(2):475-81 J:114106 Kurtev V, et al., Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem. 2004 Jun 4;279(23):24834-43 J:132209 Mehra-Chaudhary R, et al., Msx3 protein recruits histone deacetylase to down-regulate the Msx1 promoter. Biochem J. 2001 Jan 1;353(Pt 1):13-22 J:144189 Jacobs FM, et al., Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development. 2009 Feb;136(4):531-40 J:144592 Choi E, et al., A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis. J Biol Chem. 2008 Dec 12;283(50):35283-94 J:150360 Nimura K, et al., A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 2009 Jul 9;460(7252):287-91 J:150656 Yang Z, et al., Znhit1 causes cell cycle arrest and down-regulates CDK6 expression. Biochem Biophys Res Commun. 2009 Aug 14;386(1):146-52 J:150926 Zhou Y, et al., The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J. 2002 Sep 2;21(17):4632-40 J:160788 Li Z, et al., An HDAC1-binding domain within FATS bridges p21 turnover to radiation-induced tumorigenesis. Oncogene. 2010 May 6;29(18):2659-71 J:165945 Bruscoli S, et al., Glucocorticoid-induced leucine zipper (GILZ) and long GILZ inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids. J Biol Chem. 2010 Apr 2;285(14):10385-96 J:166802 Yan W, et al., Zmynd15 encodes a histone deacetylase-dependent transcriptional repressor essential for spermiogenesis and male fertility. J Biol Chem. 2010 Oct 8;285(41):31418-26 J:169899 Brown MA, et al., Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer. 2006;5:26 J:170037 Brandt S, et al., SLy2 targets the nuclear SAP30/HDAC1 complex. Int J Biochem Cell Biol. 2010 Sep;42(9):1472-81 J:175166 Saleque S, et al., Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell. 2007 Aug 17;27(4):562-72 J:176119 DiTacchio L, et al., Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science. 2011 Sep 30;333(6051):1881-5 J:190264 Alter J, et al., Stress-induced C/EBP homology protein (CHOP) represses MyoD transcription to delay myoblast differentiation. PLoS One. 2011;6(12):e29498 J:203400 He Z, et al., A novel KRAB domain-containing zinc finger transcription factor ZNF431 directly represses Patched1 transcription. J Biol Chem. 2011 Mar 4;286(9):7279-89 J:206319 Welcker JE, et al., Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development. 2013 Dec;140(24):4947-58 J:209491 Naruse Y, et al., Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol. 2004 Jul;24(14):6278-87 J:209571 Goriki A, et al., A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol. 2014 Apr;12(4):e1001839 J:210023 Duong HA, et al., Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat Struct Mol Biol. 2014 Feb;21(2):126-32 J:227377 Lu P, et al., The developmental regulator protein Gon4l associates with protein YY1, co-repressor Sin3a, and histone deacetylase 1 and mediates transcriptional repression. J Biol Chem. 2011 May 20;286(20):18311-9 J:240892 Nitarska J, et al., A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development. Cell Rep. 2016 Nov 01;17(6):1683-1698 J:243422 Streubel G, et al., Fam60a defines a variant Sin3a-Hdac complex in embryonic stem cells required for self-renewal. EMBO J. 2017 Aug 01;36(15):2216-2232 J:307864 Horisawa-Takada Y, et al., Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nat Commun. 2021 Jun 1;12(1):3184 J:319689 Zhang T, et al., A variant NuRD complex containing PWWP2A/B excludes MBD2/3 to regulate transcription at active genes. Nat Commun. 2018 Sep 18;9(1):3798 J:319940 Yan L, et al., PWWP2B Fine-Tunes Adipose Thermogenesis by Stabilizing HDACs in a NuRD Subcomplex. Adv Sci (Weinh). 2021 Aug;8(16):e2102060 J:319948 Kelly RDW, et al., Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo. Sci Rep. 2018 Oct 2;8(1):14690 J:322384 Zheng S, et al., The uncharacterized SANT and BTB domain-containing protein SANBR inhibits class switch recombination. J Biol Chem. 2021 Apr 5;:100625 J:338159 Li Y, et al., The ZFP541-KCTD19 complex is essential for pachytene progression by activating meiotic genes during mouse spermatogenesis. J Genet Genomics. 2022 Nov;49(11):1029-1041 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 03/18/2025 MGI 6.24 |
![]() |
|