About   Help   FAQ
Gene Ontology Classifications
Symbol
Name
ID
Apc
adenomatosis polyposis coli
MGI:88039

Go Annotations as Summary Text (Tabular View) (GO Graph)

GO curators for mouse genes have assigned the following annotations to the gene product of Apc. (This text reflects annotations as of Thursday, July 24, 2014.) MGI curation of this mouse gene is considered complete, including annotations derived from the biomedical literature as of November 19, 2008. If you know of any additional information regarding this mouse gene please let us know. Please supply mouse gene symbol and a PubMed ID.
Summary from NCBI RefSeq


[Summary is not available for the mouse gene. This summary is for the human ortholog.] This gene encodes a tumor suppressor protein that acts as an antagonist of the Wnt signaling pathway. It is also involved in other processes including cell migration and adhesion, transcriptional activation, and apoptosis. Defects in this gene cause familial adenomatous polyposis (FAP), an autosomal dominant pre-malignant disease that usually progresses to malignancy. Disease-associated mutations tend to be clustered in a small region designated the mutation cluster region (MCR) and result in a truncated protein product. [provided by RefSeq, Jul 2008]
Summary text based on GO annotations supported by experimental evidence in mouse
Summary text based on GO annotations supported by experimental evidence in other organisms
Summary text for additional MGI annotations
References
  1. Abal M et al. (2007) APC inactivation associates with abnormal mitosis completion and concomitant BUB1B/MAD2L1 up-regulation. Gastroenterology, 132:2448-58. (PubMed:17570218)
  2. Ahn B et al. (2001) Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res, 61:8357-60. (PubMed:11731407)
  3. Alberici P et al. (2007) Aneuploidy arises at early stages of Apc-driven intestinal tumorigenesis and pinpoints conserved chromosomal loci of allelic imbalance between mouse and human. Am J Pathol, 170:377-87. (PubMed:17200209)
  4. Baker SM et al. (1998) Enhanced intestinal adenomatous polyp formation in Pms2-/-;Min mice. Cancer Res, 58:1087-9. (PubMed:9515784)
  5. Baltgalvis KA et al. (2008) Interleukin-6 and cachexia in ApcMin/+ mice. Am J Physiol Regul Integr Comp Physiol, 294:R393-401. (PubMed:18056981)
  6. Benhamouche S et al. (2006) Apc tumor suppressor gene is the 'zonation-keeper' of mouse liver. Dev Cell, 10:759-70. (PubMed:16740478)
  7. Berger FG et al. (2007) Polyamine metabolism and tumorigenesis in the Apc(Min/+) mouse. Biochem Soc Trans, 35:336-9. (PubMed:17371273)
  8. Bjerknes M et al. (1997) APC mutation and the crypt cycle in murine and human intestine. Am J Pathol, 150:833-9. (PubMed:9060821)
  9. Blanc V et al. (2007) Deletion of the AU-Rich RNA Binding Protein Apobec-1 Reduces Intestinal Tumor Burden in Apcmin Mice. Cancer Res, 67:8565-73. (PubMed:17875695)
  10. Bruxvoort KJ et al. (2007) Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Res, 67:2490-6. (PubMed:17363566)
  11. Caldwell CM et al. (2007) APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J Cell Biol, 178:1109-20. (PubMed:17893240)
  12. Carothers AM et al. (2006) Deficient E-cadherin adhesion in C57BL/6J-Min/+ mice is associated with increased tyrosine kinase activity and RhoA-dependent actomyosin contractility. Exp Cell Res, 312:387-400. (PubMed:16368433)
  13. Chazaud C et al. (2006) Disruption of early proximodistal patterning and AVE formation in Apc mutants. Development, 133:3379-87. (PubMed:16887818)
  14. Chulada PC et al. (2000) Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res, 60:4705-8. (PubMed:10987272)
  15. Colnot S et al. (2004) Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A, 101:17216-21. (PubMed:15563600)
  16. Cormier RT et al. (2000) Dnmt1N/+ reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) resistance allele. Cancer Res, 60:3965-70. (PubMed:10919675)
  17. Cormier RT et al. (1997) Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis [see comments] Nat Genet, 17:88-91. (PubMed:9288104)
  18. Dahlhoff M et al. (2008) Betacellulin stimulates growth of the mouse intestinal epithelium and increases adenoma multiplicity in Apc(+/Min) mice. FEBS Lett, 582:2911-5. (PubMed:18656477)
  19. Dikovskaya D et al. (2007) Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J Cell Biol, 176:183-95. (PubMed:17227893)
  20. Dinchuk JE et al. (2002) Absence of Post-translational Aspartyl beta -Hydroxylation of Epidermal Growth Factor Domains in Mice Leads to Developmental Defects and an Increased Incidence of Intestinal Neoplasia. J Biol Chem, 277:12970-7. (PubMed:11773073)
  21. Elander N et al. (2008) Genetic deletion of mPGES-1 accelerates intestinal tumorigenesis in APC(Min/+) mice. Biochem Biophys Res Commun, 372:249-53. (PubMed:18485889)
  22. Ellender M et al. (2006) In utero and neonatal sensitivity of ApcMin/+ mice to radiation-induced intestinal neoplasia. Int J Radiat Biol, 82:141-51. (PubMed:16638711)
  23. Ghaleb AM et al. (2007) Haploinsufficiency of Kruppel-like factor 4 promotes adenomatous polyposis coli dependent intestinal tumorigenesis. Cancer Res, 67:7147-54. (PubMed:17671182)
  24. Girnun GD et al. (2002) APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci U S A, 99:13771-6. (PubMed:12370429)
  25. Giroux V et al. (2008) Estrogen receptor beta deficiency enhances small intestinal tumorigenesis in ApcMin/+ mice. Int J Cancer, 123:303-11. (PubMed:18464259)
  26. Gould KA et al. (1997) Localized gene action controlling intestinal neoplasia in mice. Proc Natl Acad Sci U S A, 94:5848-53. (PubMed:9159163)
  27. Gould KA et al. (1996) Mom1 is a semi-dominant modifier of intestinal adenoma size and multiplicity in Min/+ mice. Genetics, 144:1769-76. (PubMed:8978062)
  28. Gould KA et al. (1996) Genetic evaluation of candidate genes for the Mom1 modifier of intestinal neoplasia in mice. Genetics, 144:1777-85. (PubMed:8978063)
  29. Gounari F et al. (2005) Loss of adenomatous polyposis coli gene function disrupts thymic development. Nat Immunol, 6:800-9. (PubMed:16025118)
  30. Gupta RA et al. (2004) Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-delta accelerates intestinal adenoma growth. Nat Med, 10:245-7. (PubMed:14758356)
  31. Ha NC et al. (2004) Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol Cell, 15:511-21. (PubMed:15327768)
  32. Halberg RB et al. (2000) Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc Natl Acad Sci U S A, 97:3461-6. (PubMed:10716720)
  33. Hasegawa S et al. (2002) Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene. Proc Natl Acad Sci U S A, 99:297-302. (PubMed:11756652)
  34. Holmen SL et al. (2005) Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem, 280:21162-8. (PubMed:15802266)
  35. Hong KH et al. (2001) Deletion of cytosolic phospholipase A(2) suppresses Apc(Min)-induced tumorigenesis. Proc Natl Acad Sci U S A, 98:3935-9. (PubMed:11274413)
  36. Hu Y et al. (2007) Defective acute apoptotic response to genotoxic carcinogen in small intestine of APC(Min/+) mice is restored by sulindac. Cancer Lett, 248:234-44. (PubMed:16950562)
  37. Hulit J et al. (2004) Cyclin D1 genetic heterozygosity regulates colonic epithelial cell differentiation and tumor number in ApcMin mice. (Erratum: v 25(1):523) Mol Cell Biol, 24:7598-611. (PubMed:15314168)
  38. Ishikawa TO et al. (2003) Requirement for tumor suppressor Apc in the morphogenesis of anterior and ventral mouse embryo. Dev Biol, 253:230-46. (PubMed:12645927)
  39. Kanamori M et al. (2003) The PDZ protein tax-interacting protein-1 inhibits beta-catenin transcriptional activity and growth of colorectal cancer cells. J Biol Chem, 278:38758-64. (PubMed:12874278)
  40. Kita K et al. (2006) Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. Mol Biol Cell, 17:2331-45. (PubMed:16525027)
  41. Kroboth K et al. (2007) Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Mol Biol Cell, 18:910-8. (PubMed:17192415)
  42. Kuraguchi M et al. (2006) Adenomatous Polyposis Coli (APC) is required for normal development of skin and thymus PLoS Genet, 2:e146. (PubMed:17002498)
  43. Lamberti A et al. (2011) Analysis of interaction partners for eukaryotic translation elongation factor 1A M-domain by functional proteomics. Biochimie, 93:1738-46. (PubMed:21689717)
  44. Leitges M. (2007) Functional PKC in vivo analysis using deficient mouse models. Biochem Soc Trans, 35:1018-20. (PubMed:17956267)
  45. Levy DB et al. (1994) Inactivation of both APC alleles in human and mouse tumors. Cancer Res, 54:5953-8. (PubMed:7954428)
  46. Li P et al. (2007) Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology, 133:599-607. (PubMed:17681179)
  47. Mahmoud NN et al. (1997) Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Res, 57:5045-50. (PubMed:9371501)
  48. Mahmoud NN et al. (1999) Genotype-phenotype correlation in murine Apc mutation: differences in enterocyte migration and response to sulindac. Cancer Res, 59:353-9. (PubMed:9927046)
  49. Marcus DM et al. (2000) Ultrastructural and ERG findings in mice with adenomatous polyposis coli gene disruption. Mol Vis, 6:169-77. (PubMed:10982921)
  50. Moser AR et al. (2001) Genetic background affects susceptibility to mammary hyperplasias and carcinomas in Apc(min)/+ mice. Cancer Res, 61:3480-5. (PubMed:11309311)
  51. Moser AR et al. (1992) The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol, 116:1517-26. (PubMed:1541640)
  52. Mutoh M et al. (2008) Plasminogen activator inhibitor-1 (Pai-1) blockers suppress intestinal polyp formation in Min mice. Carcinogenesis, 29:824-9. (PubMed:18258607)
  53. Nateri AS et al. (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature, 437:281-5. (PubMed:16007074)
  54. Novelli MR et al. (1999) Tumor burden and clonality in multiple intestinal neoplasia mouse/normal mouse aggregation chimeras. Proc Natl Acad Sci U S A, 96:12553-8. (PubMed:10535960)
  55. Oshima H et al. (1997) Morphological and molecular processes of polyp formation in Apc(delta716) knockout mice. Cancer Res, 57:1644-9. (PubMed:9135000)
  56. Oshima M et al. (2001) Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res, 61:1733-40. (PubMed:11245490)
  57. Oshima M et al. (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87:803-9. (PubMed:8945508)
  58. Park KS et al. (2006) APC inhibits ERK pathway activation and cellular proliferation induced by RAS. J Cell Sci, 119:819-27. (PubMed:16478791)
  59. Phesse TJ et al. (2008) Deficiency of Mbd2 attenuates Wnt signaling. Mol Cell Biol, 28:6094-103. (PubMed:18644872)
  60. Pierre F et al. (1999) T cell status influences colon tumor occurrence in min mice fed short chain fructo-oligosaccharides as a diet supplement. Carcinogenesis, 20:1953-6. (PubMed:10506110)
  61. Ploplis VA et al. (2007) A urokinase-type plasminogen activator deficiency diminishes the frequency of intestinal adenomas in ApcMin/+ mice. J Pathol, 213:266-74. (PubMed:17893885)
  62. Purro SA et al. (2008) Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J Neurosci, 28:8644-54. (PubMed:18716223)
  63. Qian CN et al. (2005) Cystic Renal Neoplasia Following Conditional Inactivation of Apc in Mouse Renal Tubular Epithelium. J Biol Chem, 280:3938-3945. (PubMed:15550389)
  64. Qian Z et al. (2008) A critical role for Apc in hematopoietic stem and progenitor cell survival. J Exp Med, 205:2163-75. (PubMed:18725524)
  65. Rakoff-Nahoum S et al. (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science, 317:124-7. (PubMed:17615359)
  66. Rao CV et al. (2005) Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proc Natl Acad Sci U S A, 102:4365-70. (PubMed:15767571)
  67. Rudolph KL et al. (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet, 28:155-9. (PubMed:11381263)
  68. Sansom OJ et al. (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature, 446:676-9. (PubMed:17377531)
  69. Sansom OJ et al. (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev, 18:1385-90. (PubMed:15198980)
  70. Sansom OJ et al. (2007) Deficiency of SPARC suppresses intestinal tumorigenesis in APCMin/+ mice. Gut, 56:1410-4. (PubMed:17299058)
  71. Sasai H et al. (2000) Suppression of polypogenesis in a new mouse strain with a truncated Apc(Delta474) by a novel COX-2 inhibitor, JTE-522. Carcinogenesis, 21:953-8. (PubMed:10783317)
  72. Schoonjans K et al. (2005) Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation. Proc Natl Acad Sci U S A, 102:2058-62. (PubMed:15684064)
  73. Scott DJ et al. (2001) Lack of inducible nitric oxide synthase promotes intestinal tumorigenesis in the apc(min/+) mouse. Gastroenterology, 121:889-99. (PubMed:11606502)
  74. Senda T et al. (1996) The tumor suppressor protein APC colocalizes with beta-catenin in the colon epithelial cells. Biochem Biophys Res Commun, 223:329-34. (PubMed:8670282)
  75. Seno H et al. (2002) Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res, 62:506-11. (PubMed:11809702)
  76. Sharma M et al. (2006) Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem, 281:17140-9. (PubMed:16621792)
  77. Shibata H et al. (2007) Alpha-catenin is essential in intestinal adenoma formation. Proc Natl Acad Sci U S A, 104:18199-204. (PubMed:17989230)
  78. Smits R et al. (1998) Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology, 114:275-83. (PubMed:9453487)
  79. Smits R et al. (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev, 13:1309-21. (PubMed:10346819)
  80. Sohn KJ et al. (2001) Molecular Genetics of Ulcerative Colitis-associated Colon Cancer in the Interleukin 2- and beta(2)-Microglobulin-deficient Mouse. Cancer Res, 61:6912-7. (PubMed:11559569)
  81. Sonoshita M et al. (2001) Acceleration of intestinal polyposis through prostaglandin receptor EP2 in ApcDelta716 knockout mice. Nat Med, 7:1048-51. (PubMed:11533709)
  82. Stanton JL et al. (2001) Meta-analysis of gene expression in mouse preimplantation embryo development. Mol Hum Reprod, 7:545-52. (PubMed:11385109)
  83. Strom A et al. (2007) Unique mechanisms of growth regulation and tumor suppression upon Apc inactivation in the pancreas. Development, 134:2719-25. (PubMed:17596282)
  84. Takaku K et al. (2000) Suppression of intestinal polyposis in ApcDelta 716 knockout mice by an additional mutation in the cytosolic phospholipase A2 gene J Biol Chem, 275:34013-6. (PubMed:10969066)
  85. Takaku K et al. (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell, 92:645-56. (PubMed:9506519)
  86. Takaku K et al. (1999) Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res, 59:6113-7. (PubMed:10626800)
  87. Taketo MM et al. (2000) Gastrointestinal tumorigenesis in Smad4 (Dpc4) mutant mice. Hum Cell, 13:85-95. (PubMed:11197776)
  88. Taketo MM et al. (2000) Gastro-intestinal tumorigenesis in Smad4 mutant mice. Cytokine Growth Factor Rev, 11:147-57. (PubMed:10708962)
  89. Takizawa S et al. (2006) Human scribble, a novel tumor suppressor identified as a target of high-risk HPV E6 for ubiquitin-mediated degradation, interacts with adenomatous polyposis coli. Genes Cells, 11:453-64. (PubMed:16611247)
  90. Tran H et al. (2008) Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev, 22:528-42. (PubMed:18281465)
  91. Tucker JM et al. (2005) Potent modulation of intestinal tumorigenesis in Apcmin/+ mice by the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase. Cancer Res, 65:5390-8. (PubMed:15958588)
  92. van der Houven van Oordt CW et al. (1999) The genetic background modifies the spontaneous and X-ray-induced tumor spectrum in the Apc1638N mouse model. Genes Chromosomes Cancer, 24:191-8. (PubMed:10451698)
  93. Wang D et al. (2004) Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell, 6:285-95. (PubMed:15380519)
  94. Wasan HS et al. (1998) APC in the regulation of intestinal crypt fission. J Pathol, 185:246-55. (PubMed:9771477)
  95. Williamson SL et al. (1999) Intestinal tumorigenesis in the Apc1638N mouse treated with aspirin and resistant starch for up to 5 months. Carcinogenesis, 20:805-10. (PubMed:10334197)
  96. Wilson CL et al. (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A, 94:1402-7. (PubMed:9037065)
  97. Yang K et al. (1998) Dietary modulation of carcinoma development in a mouse model for human familial adenomatous polyposis. Cancer Res, 58:5713-7. (PubMed:9865728)
  98. Yoshimizu T et al. (2008) The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A, 105:12417-22. (PubMed:18719115)
  99. You S et al. (2006) Developmental abnormalities in multiple proliferative tissues of Apc(Min/+) mice. Int J Exp Pathol, 87:227-36. (PubMed:16709231)
  100. Yu CF et al. (2001) Differential dietary effects on colonic and small bowel neoplasia in C57BL/6J Apc Min/+ mice. Dig Dis Sci, 46:1367-80. (PubMed:11478486)
  101. Zhang T et al. (1997) Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res, 57:169-75. (PubMed:8988060)
  102. Zhou FQ et al. (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron, 42:897-912. (PubMed:15207235)



Go Annotations in Tabular Form (Text View) (GO Graph)

 
 


Gene Ontology Evidence Code Abbreviations:

  EXP Inferred from experiment
  IC Inferred by curator
  IDA Inferred from direct assay
  IEA Inferred from electronic annotation
  IGI Inferred from genetic interaction
  IMP Inferred from mutant phenotype
  IPI Inferred from physical interaction
  ISS Inferred from sequence or structural similarity
  ISO Inferred from sequence orthology
  ISA Inferred from sequence alignment
  ISM Inferred from sequence model
  NAS Non-traceable author statement
  ND No biological data available
  RCA Reviewed computational analysis
  TAS Traceable author statement


Contributing Projects:
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Tumor Biology (MTB), Gene Ontology (GO), MouseCyc
Citing These Resources
Funding Information
Warranty Disclaimer & Copyright Notice
Send questions and comments to User Support.
last database update
09/09/2014
MGI 5.19
The Jackson Laboratory