About   Help   FAQ
Phenotypes Associated with This Genotype
Genotype
MGI:5700053
Allelic
Composition
Fxntm1Mkn/Fxntm1Mkn
Tg(FXN)YG22Pook/0
Genetic
Background
involves: 129/Sv * C57BL/6 * CBA
Find Mice Using the International Mouse Strain Resource (IMSR)
Mouse lines carrying:
Fxntm1Mkn mutation (13 available); any Fxn mutation (40 available)
Tg(FXN)YG22Pook mutation (2 available)
phenotype observed in females
phenotype observed in males
N normal phenotype
mortality/aging
N
• embryonic lethality seen for Fxn-deficient embryos is recued by transgene expression; normal numbers of offspring are recovered and mice show normal lifespans, surviving to at least 2 years of age

growth/size/body
• significant increase is observed from 6 months of age
• increase in weight from 6 months of age

nervous system
N
• no neuronal histopathology is detected in cerebellar Purkinje cells or granule cells, and no abnormalities in brain or spinal cord regions are seen
• no sensory nerve or motor nerve conduction changes are seen in 9-14 month old mutants
• peripheral margination of the nucleus in many large neuronal cell bodies of the dorsal root ganglia, suggesting central chromatolysis
• between 6 months to 1 year, vacuoles are seen only in the dorsal root ganglia of the lumbar region, but after 1 year, vacuoles are seen within dorsal root ganglia of the cervical region, indicating a distal-to-proximal dying back neurodegeneration
• prominent, giant vacuoles (round, singular or multiple) are observed in large sensory neuronal bodies of dorsal root ganglia; peripheral margination of nucleus in many large neuronal cell bodies with or without vacuoles

behavior/neurological
• reduced performance on an accelerating rotarod from 3 months of age
• however, overt ataxia is not seen up to 2 years of age
• forelimb grip strength is decreased from 9 months of age
• mice show a decreased trend in locomotor activity in the open field from 6 months of age and a significant difference by 1 year of age

cardiovascular system
• iron deposition within the heart of 14-18 month old mice
• however, mice do not exhibit an increase in heart weight to body weight ratio, myofibril disarray, or fibrosis

cellular
• in 6-9 month old mice, oxidized proteins are increased in the cerebrum, cerebellum, heart, and skeletal muscle, with the most prominent increase in the cerebrum and cerebellum
• increase in lipid peroxidation in the heart

homeostasis/metabolism
• iron deposition within the heart of 14-18 month old mice
• however, mice do not exhibit an increase in heart weight to body weight ratio, myofibril disarray, or fibrosis
• level of the antioxidant enzyme CuZnSOD is decreased in the skeletal muscle by 40%

Mouse Models of Human Disease
DO ID OMIM ID(s) Ref(s)
Friedreich ataxia DOID:12705 J:114840


Contributing Projects:
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO)
Citing These Resources
Funding Information
Warranty Disclaimer, Privacy Notice, Licensing, & Copyright
Send questions and comments to User Support.
last database update
04/16/2024
MGI 6.23
The Jackson Laboratory