About   Help   FAQ
Sequence Detail
ID/Version
Q9Z2X8 Q3U243 Q547S3 Q8BQY3 Q3U8N7 Q6ZQI6 (UniProt | EBI) Last sequence update: 1999-05-01
Last annotation update: 2024-03-27
Sequence
description
from provider
RecName: Full=Kelch-like ECH-associated protein 1 {ECO:0000303|PubMed:9887101};AltName: Full=Cytosolic inhibitor of Nrf2 {ECO:0000303|Ref.2}; Short=INrf2 {ECO:0000303|Ref.2};
Provider SWISS-PROT
Sequence
Polypeptide 624 aa
For this sequence
Source
Organism mouse
See UniProt | EBI for source
Annotated genes and markers Follow the symbol links to get more information on the GO terms, expression assays, orthologs, phenotypic alleles, and other information for the genes or markers below.
Type Symbol Name GO Terms Expression
Assays
Orthologs Phenotypic
Alleles
Gene Keap1 kelch-like ECH-associated protein 1 52 97 4 38
Sequence references in MGI J:61871 Itoh K, et al., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76-86
J:78907 Dinkova-Kostova AT, et al., Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11908-13
J:83874 McMahon M, et al., Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003 Jun 13;278(24):21592-600
J:86392 Wakabayashi N, et al., Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 2003 Nov;35(3):238-45
J:86686 Okazaki N, et al., Prediction of the coding sequences of mouse homologues of KIAA gene: III. the complete nucleotide sequences of 500 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries. DNA Res. 2003 Aug 31;10(4):167-80
J:99680 The FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group), The Transcriptional Landscape of the Mammalian Genome. Science. 2005;309(5740):1559-1563
J:108124 Padmanabhan B, et al., Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell. 2006 Mar 3;21(5):689-700
J:133900 Yamamoto T, et al., Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol. 2008 Apr;28(8):2758-70
J:135362 Watai Y, et al., Subcellular localization and cytoplasmic complex status of endogenous Keap1. Genes Cells. 2007 Oct;12(10):1163-78
J:162670 Lau A, et al., A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol. 2010 Jul;30(13):3275-85
J:166156 McMahon M, et al., Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18838-43
J:172945 Komatsu M, et al., The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010 Mar;12(3):213-23
J:177485 Adam J, et al., Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling. Cancer Cell. 2011 Oct 18;20(4):524-37
J:188592 Taguchi K, et al., Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13561-6
J:203811 Ichimura Y, et al., Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013 Sep 12;51(5):618-31
J:235914 Saito R, et al., Characterizations of Three Major Cysteine Sensors of Keap1 in Stress Response. Mol Cell Biol. 2015 Nov 02;36(2):271-84
J:240280 Tong KI, et al., Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol. 2006 Apr;26(8):2887-900
J:247330 Suzuki T, et al., Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J Biol Chem. 2017 Oct 13;292(41):16817-16824
J:279942 Kobayashi A, et al., Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004 Aug;24(16):7130-9
J:279946 Cullinan SB, et al., The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004 Oct;24(19):8477-86
J:292518 Huttlin EL, et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89

Contributing Projects:
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO)
Citing These Resources
Funding Information
Warranty Disclaimer, Privacy Notice, Licensing, & Copyright
Send questions and comments to User Support.
last database update
04/23/2024
MGI 6.23
The Jackson Laboratory