About   Help   FAQ
Sequence Detail
ID/Version
Q923E4 Q9QXG8 (UniProt | EBI) Last sequence update: 2003-10-31
Last annotation update: 2024-03-27
Sequence
description
from provider
RecName: Full=NAD-dependent protein deacetylase sirtuin-1; EC=2.3.1.286 {ECO:0000255|PROSITE-ProRule:PRU00236, ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:28883095};AltName: Full=NAD-dependent protein deacylase sirtuin-1 {ECO:0000305};
Provider SWISS-PROT
Sequence
Polypeptide 737 aa
For this sequence
Source
Organism mouse
See UniProt | EBI for source
Annotated genes and markers Follow the symbol links to get more information on the GO terms, expression assays, orthologs, phenotypic alleles, and other information for the genes or markers below.
Type Symbol Name GO Terms Expression
Assays
Orthologs Phenotypic
Alleles
Gene Sirt1 sirtuin 1 325 121 3 43
Sequence references in MGI J:65145 Imai S, et al., Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795-800
J:72328 Luo J, et al., Negative Control of p53 by Sir2alpha Promotes Cell Survival under Stress. Cell. 2001 Oct 19;107(2):137-48
J:81010 McBurney MW, et al., The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003 Jan;23(1):38-54
J:85542 Cheng HL, et al., Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10794-9
J:91106 Picard F, et al., Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004 Jun 17;429(6993):771-6
J:96630 Rodgers JT, et al., Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005 Mar 3;434(7029):113-8
J:97765 Bouras T, et al., SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005 Mar 18;280(11):10264-76
J:98701 Nemoto S, et al., SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005 Apr 22;280(16):16456-60
J:100638 Moynihan KA, et al., Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005 Aug;2(2):105-17
J:107100 Bordone L, et al., Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006 Feb;4(2):e31
J:120915 Tanno M, et al., Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 2007 Mar 2;282(9):6823-32
J:122512 Gerhart-Hines Z, et al., Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007 Apr 4;26(7):1913-23
J:126570 Wong S, et al., Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J. 2007 Nov 1;407(3):451-60
J:127714 Vaquero A, et al., SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007 Nov 15;450(7168):440-4
J:128457 Zhang J, The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem. 2007 Nov 23;282(47):34356-64
J:132188 Coussens M, et al., Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS One. 2008;3(2):e1571
J:132698 Lee IH, et al., A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3374-9
J:134888 Li X, et al., SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007 Oct 12;28(1):91-106
J:135171 Fulco M, et al., Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008 May;14(5):661-73
J:139295 Nakahata Y, et al., The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008 Jul 25;134(2):329-40
J:139296 Asher G, et al., SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008 Jul 25;134(2):317-28
J:147991 Ramsey KM, et al., Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009 May 1;324(5927):651-4
J:148170 Purushotham A, et al., Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009 Apr;9(4):327-38
J:149804 Han MK, et al., SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008 Mar 6;2(3):241-51
J:152462 Kang H, et al., CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One. 2009;4(8):e6611
J:160869 Sequeira J, et al., sirt1-null mice develop an autoimmune-like condition. Exp Cell Res. 2008 Oct 1;314(16):3069-74
J:163084 Goitre L, et al., KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One. 2010;5(7):e11786
J:163162 Ramadori G, et al., SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010 Jul 4;12(1):78-87
J:165940 Guo X, et al., DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem. 2010 Apr 23;285(17):13223-32
J:166226 Lynch CJ, et al., SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One. 2010;5(10):e13502
J:167988 Palacios JA, et al., SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010 Dec 27;191(7):1299-313
J:168151 Kornberg MD, et al., GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol. 2010 Nov;12(11):1094-100
J:169315 Powell MJ, et al., Disruption of a Sirt1-dependent autophagy checkpoint in the prostate results in prostatic intraepithelial neoplasia lesion formation. Cancer Res. 2011 Feb 1;71(3):964-75
J:178276 Wang C, et al., Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 2006 Sep;8(9):1025-31
J:178278 Chen WY, et al., Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005 Nov 4;123(3):437-48
J:178279 Daitoku H, et al., Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7
J:180466 Kume S, et al., SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem. 2007 Jan 5;282(1):151-8
J:180573 Lan F, et al., SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008 Oct 10;283(41):27628-35
J:182378 Grimm AA, et al., A nutrient-sensitive interaction between Sirt1 and HNF-1alpha regulates Crp expression. Aging Cell. 2011 Apr;10(2):305-17
J:182476 Ponugoti B, et al., SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010 Oct 29;285(44):33959-70
J:184684 Nakae J, et al., Novel repressor regulates insulin sensitivity through interaction with Foxo1. EMBO J. 2012 May 16;31(10):2275-95
J:193985 Dominy JE Jr, et al., The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell. 2012 Dec 28;48(6):900-13
J:197487 Tiberi L, et al., BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci. 2012 Dec;15(12):1627-35
J:215876 Wang FM, et al., Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J. 2011 Jan 1;433(1):245-52
J:231208 Muth V, et al., Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J. 2001 Mar 15;20(6):1353-62
J:250978 Ianni A, et al., Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and Sirt1. Biochem Biophys Res Commun. 2017 Oct 21;492(3):434-440
J:256921 Fang J, et al., Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8352-E8361
J:265944 Latorre-Muro P, et al., Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell. 2018 Sep 6;71(5):718-732.e9
J:266247 Fukuda M, et al., SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix. Nat Commun. 2018 Jul 19;9(1):2833
J:276379 Hallows WC, et al., Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10230-10235
J:292518 Huttlin EL, et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89

Contributing Projects:
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO)
Citing These Resources
Funding Information
Warranty Disclaimer, Privacy Notice, Licensing, & Copyright
Send questions and comments to User Support.
last database update
04/16/2024
MGI 6.23
The Jackson Laboratory