About   Help   FAQ
Gene Expression Literature Summary
Symbol
Name
ID
Smoc2
SPARC related modular calcium binding 2
MGI:1929881

34 matching records from 34 references.

Summary by Age and Assay: Numbers in the table indicate the number of results matching the search criteria.
Age E0.5 E1 E2.5 E3.5 E8.5 E10.5 E11.5 E12 E12.5 E13 E13.5 E14 E14.5 E15.5 E16.5 E18.5 P
Immunohistochemistry (section) 1 1 1 2
In situ RNA (section) 2 2 3 1 4 4 2 6 4
In situ RNA (whole mount) 2 1 1 4 1 5 2 1
In situ reporter (knock in) 1 1 1 2
Western blot 1
RT-PCR 1 1 1 1 1 2 1 3 1 1 1 3

Summary by Gene and Reference: Number indicates the number of results matching the search criteria recorded for each reference.
* Indicates detailed expression data entries available
Smoc2  SPARC related modular calcium binding 2   (Synonyms: 1700056C05Rik, 5430426J21Rik, Smoc2l)
Results  Reference
4*J:191534 Bloch-Zupan A, Jamet X, Etard C, Laugel V, Muller J, Geoffroy V, Strauss JP, Pelletier V, Marion V, Poch O, Strahle U, Stoetzel C, Dollfus H, Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet. 2011 Dec 9;89(6):773-81
2*J:103688 Challen G, Gardiner B, Caruana G, Kostoulias X, Martinez G, Crowe M, Taylor DF, Bertram J, Little M, Grimmond SM, Temporal and spatial transcriptional programs in murine kidney development. Physiol Genomics. 2005 Oct 17;23(2):159-71
1*J:148410 Combes AN, Lesieur E, Harley VR, Sinclair AH, Little MH, Wilhelm D, Koopman P, Three-dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Dev Dyn. 2009 May;238(5):1033-41
2J:330505 Drake KA, Chaney C, Patel M, Das A, Bittencourt J, Cohn M, Carroll TJ, Transcription Factors YAP/TAZ and SRF Cooperate To Specify Renal Myofibroblasts in the Developing Mouse Kidney. J Am Soc Nephrol. 2022 Aug 2;
1J:295217 Drake KA, Chaney CP, Das A, Roy P, Kwartler CS, Rakheja D, Carroll TJ, Stromal beta-catenin activation impacts nephron progenitor differentiation in the developing kidney and may contribute to Wilms tumor. Development. 2020 Jul 31;147(21):dev189597
1J:296650 England AR, Chaney CP, Das A, Patel M, Malewska A, Armendariz D, Hon GC, Strand DW, Drake KA, Carroll TJ, Identification and characterization of cellular heterogeneity within the developing renal interstitium. Development. 2020 Aug 14;147(15):dev190108
3J:332217 Feng J, Han X, Yuan Y, Cho CK, Janeckova E, Guo T, Pareek S, Rahman MS, Zheng B, Bi J, Jing J, Zhang M, Xu J, Ho TV, Chai Y, TGF-beta signaling and Creb5 cooperatively regulate Fgf18 to control pharyngeal muscle development. Elife. 2022 Dec 21;11
1J:330742 Goodyer WR, Beyersdorf BM, Duan L, van den Berg NS, Mantri S, Galdos FX, Puluca N, Buikema JW, Lee S, Salmi D, Robinson ER, Rogalla S, Cogan DP, Khosla C, Rosenthal EL, Wu SM, In vivo visualization and molecular targeting of the cardiac conduction system. J Clin Invest. 2022 Oct 17;132(20):e156955
2*J:306155 Goodyer WR, Beyersdorf BM, Paik DT, Tian L, Li G, Buikema JW, Chirikian O, Choi S, Venkatraman S, Adams EL, Tessier-Lavigne M, Wu JC, Wu SM, Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution. Circ Res. 2019 Aug 2;125(4):379-397
1*J:171409 GUDMAP Consortium, GUDMAP: the GenitoUrinary Development Molecular Anatomy Project. www.gudmap.org. 2004;
1*J:231595 Gurdziel K, Vogt KR, Walton KD, Schneider GK, Gumucio DL, Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun. Dev Dyn. 2016 May;245(5):614-26
1J:242224 Haller M, Mo Q, Imamoto A, Lamb DJ, Murine model indicates 22q11.2 signaling adaptor CRKL is a dosage-sensitive regulator of genitourinary development. Proc Natl Acad Sci U S A. 2017 May 09;114(19):4981-4986
1J:327415 Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, Ho TV, Chai Y, Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun. 2022 Aug 16;13(1):4803
2*J:228563 Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, Blake A, Chen CK, Easty R, Di Fenza A, Fiegel T, Grifiths M, Horne A, Karp NA, Kurbatova N, Mason JC, Matthews P, Oakley DJ, Qazi A, Regnart J, Retha A, Santos LA, Sneddon DJ, Warren J, Westerberg H, Wilson RJ, Melvin DG, Smedley D, Brown SD, Flicek P, Skarnes WC, Mallon AM, Parkinson H, The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 2014 Jan;42(Database issue):D802-9
1J:225061 Kouskoura T, Kozlova A, Alexiou M, Blumer S, Zouvelou V, Katsaros C, Chiquet M, Mitsiadis TA, Graf D, The etiology of cleft palate formation in BMP7-deficient mice. PLoS One. 2013;8(3):e59463
1J:293668 Li H, Li D, Wang Y, Huang Z, Xu J, Yang T, Wang L, Tang Q, Cai CL, Huang H, Zhang Y, Chen Y, Nkx2-5 defines a subpopulation of pacemaker cells and is essential for the physiological function of the sinoatrial node in mice. Development. 2019 Jul 25;146(14):dev178145
1J:346632 Li H, Tang Q, Yang T, Wang Z, Li D, Wang L, Li L, Chen Y, Huang H, Zhang Y, Chen Y, Segregation of morphogenetic regulatory function of Shox2 from its cell fate guardian role in sinoatrial node development. Commun Biol. 2024 Mar 29;7(1):385
2*J:209716 Liu P, Lu J, Cardoso WV, Vaziri C, The SPARC-related factor SMOC-2 promotes growth factor-induced cyclin D1 expression and DNA synthesis via integrin-linked kinase. Mol Biol Cell. 2008 Jan;19(1):248-61
5*J:112870 Mager J, Schultz RM, Brunk BP, Bartolomei MS, Identification of candidate maternal-effect genes through comparison of multiple microarray data sets. Mamm Genome. 2006 Sep;17(9):941-9
4*J:138003 Maier S, Paulsson M, Hartmann U, The widely expressed extracellular matrix protein SMOC-2 promotes keratinocyte attachment and migration. Exp Cell Res. 2008 Aug 1;314(13):2477-87
1*J:139122 Manabe R, Tsutsui K, Yamada T, Kimura M, Nakano I, Shimono C, Sanzen N, Furutani Y, Fukuda T, Oguri Y, Shimamoto K, Kiyozumi D, Sato Y, Sado Y, Senoo H, Yamashina S, Fukuda S, Kawai J, Sugiura N, Kimata K, Hayashizaki Y, Sekiguchi K, Transcriptome-based systematic identification of extracellular matrix proteins. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12849-54
1*J:308708 Martinez ME, Hernandez A, The Type 3 Deiodinase Is a Critical Modulator of Thyroid Hormone Sensitivity in the Fetal Brain. Front Neurosci. 2021;15:703730
2J:324116 Morita R, Sanzen N, Sasaki H, Hayashi T, Umeda M, Yoshimura M, Yamamoto T, Shibata T, Abe T, Kiyonari H, Furuta Y, Nikaido I, Fujiwara H, Tracing the origin of hair follicle stem cells. Nature. 2021 Jun;594(7864):547-552
4*J:296149 Morkmued S, Clauss F, Schuhbaur B, Fraulob V, Mathieu E, Hemmerle J, Clevers H, Koo BK, Dolle P, Bloch-Zupan A, Niederreither K, Deficiency of the SMOC2 matricellular protein impairs bone healing and produces age-dependent bone loss. Sci Rep. 2020 Sep 9;10(1):14817
1J:154029 Munger SC, Aylor DL, Syed HA, Magwene PM, Threadgill DW, Capel B, Elucidation of the transcription network governing mammalian sex determination by exploiting strain-specific susceptibility to sex reversal. Genes Dev. 2009 Nov 1;23(21):2521-36
11*J:153731 Pazin DE, Albrecht KH, Developmental expression of Smoc1 and Smoc2 suggests potential roles in fetal gonad and reproductive tract differentiation. Dev Dyn. 2009 Nov;238(11):2877-90
1J:314589 Takahata Y, Hagino H, Kimura A, Urushizaki M, Kobayashi S, Wakamori K, Fujiwara C, Nakamura E, Yu K, Kiyonari H, Bando K, Murakami T, Komori T, Hata K, Nishimura R, Smoc1 and Smoc2 regulate bone formation as downstream molecules of Runx2. Commun Biol. 2021 Oct 19;4(1):1199
5*J:215487 Thompson CL, Ng L, Menon V, Martinez S, Lee CK, Glattfelder K, Sunkin SM, Henry A, Lau C, Dang C, Garcia-Lopez R, Martinez-Ferre A, Pombero A, Rubenstein JL, Wakeman WB, Hohmann J, Dee N, Sodt AJ, Young R, Smith K, Nguyen TN, Kidney J, Kuan L, Jeromin A,Kaykas A, Miller J, Page D, Orta G, Bernard A, Riley Z, Smith S, Wohnoutka P, Hawrylycz MJ, Puelles L, Jones AR, A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron. 2014 Jul 16;83(2):309-23
2J:274879 van Eif VWW, Stefanovic S, van Duijvenboden K, Bakker M, Wakker V, de Gier-de Vries C, Zaffran S, Verkerk AO, Boukens BJ, Christoffels VM, Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development. 2019 Apr 25;146(8):dev173161
1J:295894 Wei G, Gao N, Chen J, Fan L, Zeng Z, Gao G, Li L, Fang G, Hu K, Pang X, Fan HY, Clevers H, Liu M, Zhang X, Li D, Erk and MAPK signaling is essential for intestinal development through Wnt pathway modulation. Development. 2020 Sep 2;147(17):dev185678
2J:334527 Weiss AC, Blank E, Bohnenpoll T, Kleppa MJ, Rivera-Reyes R, Taketo MM, Trowe MO, Kispert A, Permissive ureter specification by TBX18-mediated repression of metanephric gene expression. Development. 2023 Mar 15;150(6):dev201048
2*J:307862 Wilkerson BA, Zebroski HL, Finkbeiner CR, Chitsazan AD, Beach KE, Sen N, Zhang RC, Bermingham-McDonogh O, Novel cell types and developmental lineages revealed by single-cell RNA-seq analysis of the mouse crista ampullaris. Elife. 2021 May 18;10:e60108
2*J:306327 Xu J, Liu H, Lan Y, Jiang R, Cis-Repression of Foxq1 Expression Affects Foxf2-Mediated Gene Expression in Palate Development. Front Cell Dev Biol. 2021;9:665109
1J:287549 Xu J, Liu H, Lan Y, Park JS, Jiang R, Genome-wide Identification of Foxf2 Target Genes in Palate Development. J Dent Res. 2020 Apr;99(4):463-471

Contributing Projects:
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO)
Citing These Resources
Funding Information
Warranty Disclaimer, Privacy Notice, Licensing, & Copyright
Send questions and comments to User Support.
last database update
04/16/2024
MGI 6.23
The Jackson Laboratory