
(J. Computational Biology, 13(8), pp. 1457-64, 2006)

fjoin: Simple and Efficient Computation of Feature Overlaps

JOEL E. RICHARDSON1

ABSTRACT
Sets of biological features with genome coordinates (e.g., genes and promoters) are a
particularly common form of data in bioinformatics today. Accordingly, an increasingly
important processing step involves comparing coordinates from large sets of features to
find overlapping feature pairs. This paper presents fjoin, an efficient, robust, and simple
algorithm for finding these pairs, and a downloadable implementation. For typical
bioinformatics feature sets, fjoin requires O(nlog(n)) time (O(n) if the inputs are sorted)
and uses O(1) space. The reference implementation is a stand-alone Python program; it
implements the basic algorithm and a number of useful extensions, which are also
discussed in this paper.

1. INTRODUCTION
In biology today and for the foreseeable future, data comprising features with genome
coordinates are both very common and very central. Major offerings of prominent data
providers are of this form (e.g., SNPs from dbSNP (dbSNP 2006) or gene models from
Ensembl (Ensembl 2006)), as are the output of the most commonly used tools (e.g.,
BLAT (Kent 2002), SIM4 (Florea, et al. 1998), FASTA (Pearson 2000)). There are
defined standard file formats for representing sets of features (e.g., GFF3 (GFF3 2004),
PSL (PSL 2006)). Finally, the main bioinformatics visualization paradigm, the genome
browser, is devoted to viewing and exploring large sets of features (GBrowse (GBrowse
2006), UCSC Genome Browser (UCSC 2006)).

Given the prevalence of feature-set data and tools, it is not surprising that a common
problem is to compare such sets, looking for coordinate-based overlap or (more
generally) proximity between the members. In the Mouse Genome Informatics program
(MGI 2006, Eppig, et al. 2005, Hill, et al. 2004, Krupke, et al. 2005), we routinely
perform this kind of analysis. One example is processing new mouse transcript sequences
from Genbank to determine if they represent known or novel genes. As one part of this
analysis, we perform a high-stringency genome alignment to assign coordinates to the
transcripts and then analyze the overlaps with known genes.

The trivial solution to finding all overlapping feature pairs is a nested loop:

def nestedLoops(X, Y):
 // Compares every x in X to every y in Y.
 foreach(x in X):
 foreach(y in Y):
 if(overlaps(x,y)):
 output(x,y)

1 Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609.

For small data sets, this algorithm is fine. However, it quickly becomes impractical for
large data sets because of the quadratic increase in the number of iterations through the
inner loop. For example, in collaboration with the Mouse Genome Sequencing and
Analysis Consortium (MGSC 2002), a new project at MGI is to compare the NCBI and
Ensembl gene models to help generate a nonredundant set of consensus genes for the
mouse. One of the analysis steps compares all exons from the two sources for coordinate
based overlaps. For mouse build 36, these total about 292,000 exons from NCBI and
278,000 from Ensembl. Using nested loops, we must perform > 8x1010 tests for overlap,
a process that takes days to run. In contrast, fjoin compares the NCBI and Ensembl gene
models in under 5 minutes on a Mac PowerBook G4 laptop.

The problem of finding overlapping genome features is a special case of finding
overlapping regions in n-dimensional space. There is a long history of algorithms
research for spatial/geometric data (Samet 1990), and there are a number of relevant data
structures that could be applied to our problem, e.g., segment trees (Bentley 1977),
interval trees (Edelsbrunner 1980), and R-trees (Guttman 1984). Today, several database
systems such as Postgres and Oracle provide R-tree indexing as an option, and their use
for answering feature-overlaps queries has been previously reported (Lapp, et al., 2003).
In that report, using R-trees in GBrowse’s backing store achieved a 4-5x speedup in
queries for features within a viewing range.

The motivation for our work was the need for an easy-to-use command-line tool, suitable
for use in file-processing applications and pipelines. While using spatial indexes is a
reasonable approach, we did not want to require installation of a database system as a
prerequisite for using the tool. The fjoin algorithm was developed while considering
alternatives. One contribution of this paper is in achieving O(nlog(n)) performance with a
remarkably simple algorithm, requiring no sophisticated index structures or backing
database system. fjoin has been implemented as a command-line tool suitable for use in
file processing pipelines. The program comprises a few hundred lines of Python code
(Python 2006).

2. THE ALGORITHM
Definitions. For any feature, x, we’ll refer to its start and end coordinates as x.start and
x.end, respectively. We assume all coordinates are integer base positions and that x.start
<= x.end for all features. The overlap, V, between two features, x and y, is defined as:
V(x,y) = min(x.end, y.end) – max(x.start, y.start) + 1. Figure 1 shows three features, a, b,
and c, and computes their overlaps. Note that disjoint features such as a and c have a
negative overlap, whose absolute value is the distance between them.

V(a,b) = min(9,15) – max(2,6) + 1 = 4
V(a,c) = -2
V(b,c) = 3

c

Figure 1. Three features, a, b, and c, and their overlaps.

a
 b
1 5 10 15

Outline. Fjoin is a specialized sort-merge join (Korth and Silberschatz, 1986). We first
sort each input by start coordinate, if not already done. We then perform a “merge pass”
over the sorted lists; that is, we move along them, more or less in parallel, and check for
overlapping pairs as we go. Since robust and efficient sorting tools are readily available2,
our focus is on the merge pass. In the following, we refer to the sorted feature sets as
“streams”.

The merge pass. The merge pass is a sliding window algorithm. For each stream, we
maintain a window, which is a sub-sequence of the features seen so far in that stream. We
also maintain a current feature, which is the most recently returned feature from that
stream; the current position of a stream is the start position of its current feature. We also
assume the existence of a special sentinel feature, whose start coordinate is infinite3; the
sentinel is returned after the last real feature has been returned by a stream. In each round,
we choose the “lagging” stream, i.e., the one with the smaller current position, and scan
(i.e., compare) its current feature with the features in the opposite stream’s window. We
report any overlaps and update the windows as described below. This procedure is
repeated until we reach the end of both streams.

Managing windows. The strategy for maintaining windows derives from the following
simple observation about sorted streams. If feature x from stream X is to the left of
feature y from stream Y (i.e., if x.end < y.start), then x does not overlap y, nor any Y
feature following y, and vice versa. During the merge pass, we will add a feature to its
stream's window only if there is a possibility of overlap with remaining features in the
opposite stream, and we will remove a feature from its window when such overlaps are
no longer possible.

Consider Figure 2(a), in which we scan feature y against window WX, and consider the
first (leftmost) feature in WX. Clearly, it does not overlap y; moreover, because Y is
sorted, it cannot overlap any remaining y. We can therefore remove it from WX. We
remove the third feature for the same reason. The second feature overlaps y, and we
report the overlap. However, because we cannot rule out the possibility of further
overlaps, we leave this feature in WX. Finally, because y is not to the left of X’s current
position, more overlaps are possible, so we add y to WY. Figure 2b shows the result.

2 Indeed, if sorting is required, the reference implementation calls the standard Unix sort.
3 How the sentinel is represented is implementation dependent. The key point is that the
sentinel’s start coordinate compares greater than any real coordinate.

X

Y
y

WX

WY

x
S

S

∞

Figure 2. The merge pass. Feature streams X and Y are sorted in order of increasing start position.
A sentinel (S) marks the end of each stream. Each stream has a current feature (x and y) and a
window (WX, WY). Features already processed are drawn with dotted lines. In each round, the stream
with the smaller current position is chosen; its current feature is scanned against the opposite
stream’s window, and the stream is advanced to the next feature. The panels show snapshots of
successive rounds of a merge already under way. (a) First, we scan feature y against window WX,
which contains the first three features of X. During the scan, the first and third features will be
removed from WX, and the overlap with the second will be reported. y will then be added to WY.
Finally, stream Y will be advanced to the next feature, ending the round. (b) In this round, x will be
scanned against WY. Both features overlap x, so both remain in WY. However, we omit adding x to
WX, since it is to the left of Y’s current position, and therefore cannot overlap any remaining
features. (c) In this round, x is scanned against WY, leaving WY empty (d). Note that y is not scanned
against WX until we reach X's sentinel. As well, note that WY remains empty for the rest of the merge
pass.

X

Y y

WX

WY

x S

S

∞

X

Y
y

WX

WY

direction of travel

x
S

S

∞

X

Y
y

WX

WY

x S

S

∞

(a)

(b)

(c)

(d)

Pseudo code. The following pseudo code states the algorithm more precisely. A number
of details are omitted to focus on the heart of the algorithm. In particular, we assume X
and Y are already sorted, and we defer the generalization to overlap by at least k to
Section 6. Line numbers appear in the left margin for later reference.

def fjoin(X,Y):
Wx = []
Wy = []
x = X.next()
y = Y.next()
while not (x is sentinel and y is sentinel):

if x.start <= y.start:
scan(x, Wx, y, Wy)
x = X.next()

else:
scan(y, Wy, x, Wx)
y = Y.next()

def scan(f, Wf, g, Wg):

for g2 in Wg:
if leftOf(g2,f):

remove g2 from Wg
else if overlaps(g2,f):

output
end for-loop
if not leftOf(f, g):

append f to Wf

def overlaps(a, b):
v = min(a.end,b.end) – max(a.start,b.start) + 1
return (v >= 1)

def leftOf(a, b):

return (a.end < b.start)

4. CORRECTNESS
In this section, we show that fjoin is correct, i.e., it outputs a feature pair (x,y) if and only
if x and y overlap.

Only-if: Clearly, to reach the output statement in line 16, the features must overlap,
because of the condition imposed in line 15.

If: We need to show that if x and y overlap, then fjoin outputs the pair. First, observe that
at some point during the while loop (lines 5-11), scan(f, ...) is called (either line 7 or 10)
for every feature, f. Now assume there is an overlapping pair (x,y). Suppose x.start <=
y.start. Because of the condition in line 6, scan(x, ...) will be called before
scan(y, ...). Let that call be: scan(x,Wx,y',Wy), where x.start <= y'.start <= y.start.
Because we assume x overlaps y, x cannot be left of y' (line 17), so x will be added to WX
(line 18). Now, x remains in WX until the call to scan(y, ...). To see this, assume x is
removed (line 14) prior to calling scan(y, ...). Then there must be some y'', where
y'.start <= y''.start <= y.start, where x is left of y'' (line 13). But then, x could not
overlap y, a contradiction. Therefore, x is a member of WX when we call scan(y, ...).

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16

17
18

19
20

21

During this call, the for loop (lines 12-16) compares y with every feature in WX. The
overlap of x and y will be discovered and reported (lines 15 and 16). A symmetric
argument holds for the case where x.start > y.start.

Therefore, fjoin outputs a pair (x,y) if and only if x and y overlap.

5. PERFORMANCE
The theoretical performance of this algorithm is easy to analyze. Sorting is nlog(n), so the
cost of sorting the inputs is no more than |X|log(|X|) + |Y|log(|Y|). In practice, we sort the
files once and then run many analyses (and some data sets are already sorted), so the
actual sorting cost is amortized.

The loop in fjoin iterates over all features in both lists, and for each feature, iterates over
the opposite stream’s window. If aX is the average size of WX and aY is the average size
of WY, then the total time to run fjoin is no more than: |X|log(|X|) + |Y|log(|Y|) + aY|X| +
aX|Y|. Since aX and aY are (typically small) constants, fjoin is O(nlog(n)), and it requires
O(1) space. If the feature sets are already sorted, then fjoin is O(n).

In comparing exons from the NCBI and Ensembl mouse build 36 gene models, the
empirical average window size was 1.5, and we can expect such values to be the rule.
Consider the point immediately following a scan, say, of y against WX. At this point, WX
contains precisely those x’s that (a) have been seen, and (b) can possibly overlap a y
following the current position. Because of the sort order, we know we have seen all x’s
where x.start <= y.start. Therefore, WX contains all x’s where x.start <= y.start and
x.end >= y.start, i.e., the x’s that cover position y.start. In other words, WX contains the
x’s that are “stacked up” at position y.start. Thus, aX equals the average stacking depth of
features in X at the start coordinates in Y. While genomic features certainly do overlap
one another, they do not stack very deeply, so we can expect small average window sizes.

Note that in the worst case, fjoin’s performance can degrade to O(n2). Consider the
hypothetical (and highly unlikely) scenario depicted in Figure 3. Because every feature
overlaps every other, the windows continue to grow; each scan compares the next feature
against everything seen so far in the other stream. Although fjoin is n2 in this instance, it
is only because there are n2 overlaps in the data. In general, fjoin’s time and space
requirements vary in proportion to the amount of overlap inherent in the data.

Figure 3. Worst case. In the worst case, fjoin is O(n2). Here, every feature overlaps
every other. The windows continue to grow, and each new feature is scanned against
every feature seen so far in the opposite stream. Note, however, that n2 iterations are
needed simply to enumerate the answer. The amount of work that fjoin does varies in
proportion to the amount of overlap in the data.

X WX

Y WY

...

...

x

y

6. EXTENSIONS
Simple extensions allow us to generalize fjoin in several useful directions.

Minimum overlap, maximum separation. We have so far considered “overlaps” to mean
“at least one base”. However, it is useful to allow users to specify a minimum amount for
two features to qualify as “overlapping”. For example, we may wish to limit qualifying
pairs to those that overlap by at least 100 bases. The essential change is to the overlaps
and leftOf functions (and the corresponding calls in the body of the scan procedure).
Here, k is the minimum overlap amount specified by the user:

 def overlaps(a, b, k):
 v = min(a.end, b.end) – max(a.start,b.start) + 1
 return v >= k

 def leftOf(a, b, k):
 return (a.end < (b.start + k – 1))

We can also find feature pairs that are separated by no more than a given amount by
passing a negative k. For example, to find SNPs within 10 kb of any gene, we’d specify k
= -10000. Note that for given inputs, the average window size is inversely proportional
to k. For example, as k becomes more negative, it becomes “easier” for two features to
overlap, and “harder” to be leftOf a given position p.

Minimum overlap fraction. A further extension allows the minimum overlap to be
specified, not as a fixed number, but as a percentage of the length of the features, e.g., to
require an overlap of at least 80%. An additional parameter specifies whether the
percentage is relative to the longer or the shorter of each pair. (As special cases,
specifying 100% of the longer means perfect matches, while 100% of the shorter means
containment.) For this extension, the minimum overlap amount (k) is recalculated by the
scan procedure for each call to overlaps (details omitted) . For determining when to
remove features from windows, we cannot use k, since it changes. However, k is a
positive percentage of a positive length, so we may conservatively pass 0. The revised
scan procedure follows:

 def scan(f, Wf, g, Wg):

 for g2 in Wg:
 if leftOf(g2, f, 0):
 remove g2 from Wg
 else if overlaps(f, g2, computeK(f,g2)):
 output

 #
 if not leftOf(f, g, 0):

append f to Wf

Continuous intervals. Another extension handles intervals in continuous coordinate
systems, for example, in genetic or RH maps. In a continuous coordinate system,
coordinates are represented as floating-point numbers, and the overlap between two
intervals is defined as V(x,y) = min(x.end, y.end) – max(x.start, y.start). We can handle
continuous intervals by changing the overlaps and leftOf functions:

 def overlaps(a, b, k):
 v = min(a.end, b.end) – max(a.start,b.start)
 return v >= k

 def leftOf(a, b, k):
 return (a.end < (b.start + k))

The reference implementation is suitably parameterized and handles both discrete and
continuous intervals.

Handling chromosome and strand. Actual genomics feature sets almost always include
chromosome and strand along with start and end coordinates. Generally, we don’t
consider features on different chromosomes as overlapping, regardless of their
coordinates, and we may or may not accept features from opposite strands, depending on
need. Of course, one can always partition the input by chromosome and strand, then run
fjoin separately against each subset. The reference implementation handles combined
(unpartitioned) data sets. The data must be globally sorted on start position, thus
intermingling features from different chromosomes/strands; internally, it maintains a
separate window for each chromosome/strand. These are stored in a hash table, so finding
the correct window for a feature is a constant-time operation.

Handling n inputs. Although not currently implemented, fjoin is clearly extensible to
more than two inputs. In each round, we would advance the stream with the minimum
current position, and compare against the windows of all the other streams.

7. IMPLEMENTATION
An implementation of fjoin is available for download from:
ftp://ftp.informatics.jax.org/pub/fjoin. This is a stand-alone Python program that
implements the basic algorithm as well as most of the extensions described in the
previous section. The program requires version 2.3 or later of the Python interpreter.
Python is available at http://www.python.org.

8. SUMMARY
This paper has presented fjoin, a new algorithm for efficiently finding proximity-based
pairs of features (e.g., overlapping features), given two feature sets. fjoin is a remarkably
simple procedure, yet achieves O(nlog(n)) performance (O(n), if the inputs are sorted),
using O(1) space. We have described the basic algorithm, shown its correctness, analyzed
its performance, and discussed several useful extensions. An implementation of fjoin can
be downloaded from ftp://ftp.informatics.jax.org/pub/fjoin.

ACKNOWLEDGEMENTS
Thanks to Carol Bult, Joel Graber, Jim Kadin, and Ben King for reading drafts of this
paper and providing numerous helpful comments and constructive criticisms. Thanks
especially to Jim for suggesting a refinement that simplified the algorithm and for
outlining the correctness proof.

REFERENCES

Bentley, J.L. 1977. Algorithms for Klee’s rectangle problem. Unpublished. Computer
Sciences Department, Carnegie-Mellon University, Pittsburgh.

dbSNP. 2006. Online database resource at: http://www.ncbi.nlm.nih.gov/SNP

Edelsbrunner, H. 1980. Dynamic rectangle intersection searching. Institute for
Information Processing Report 47, Technical University of Graz, Graz, Austria.

Ensembl. 2006. Online database resource at: http://www.ensembl.org

Eppig, J.T., Bult, C.J., Kadin, J.A., Richardson, J.E., Blake, J.A., and the members of the
Mouse Genome Database Group. 2005. The Mouse Genome Database (MGD): from
genes to mice—a community resource for mouse biology. Nucleic Acids Res 2005; 33:
D471-D475.

Florea, L., Hartzell, G., Zhang, Z., Rubin, G., and Miller, W. 1998. A computer program
for aligning a cDNA sequence with a genomic DNA sequence. Genome Research 8, 967-
974.

GBrowse. 2006. Open-source genome map browser at: http://www.gmod.org/ggb/

GFF3. 2004. Generic Feature Format Version 3. Online documentation available at:
http://song.sourceforge.net/gff3-jan04.shtml

Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching. Proceedings
of the ACM SIGMOD Conference, Boston, pp. 44-57.

Hill, D.P., Begley, D.A., Finger, J.H., Hayamizu, T.F., McCright, I.J., Smith, C.M., Beal,
J.S., Corbani, L.E., Blake, J.A., Eppig, J.T., Kadin, J.A., Richardson, J.E., and Ringwald,
M. 2004. The mouse Gene Expression Database (GXD): updates and enhancements.
Nucleic Acids Res 32: D568-D571.

Kent, W.J. 2002. BLAT -- The BLAST-Like Alignment Tool. Genome Research 4: 656-
664.

Korth, H. and Silberschatz, A. 1986. Database System Concepts. McGraw-Hill, New
York, p. 315.
Krupke, D.M., Näf, D., Vincent M.J., Allio, T., Mikaelian, I., Sundberg, J.P., Bult, C.J.,
and Eppig, J.T. 2005. The Mouse Tumor Biology Database: integrated access to mouse
cancer biology data. Exp Lung Res 31: 1-12.

Lapp, H., Mungall, C., Cain, S., and Stein, L. 2003. Optimizing Genome Interval Overlap
Queries Using an R-Tree Index. ISMB Abstract, Brisbane, Australia.

MGI. 2006. Online database resource at: http://www.informatics.jax.org

Mouse Genome Sequencing Consortium (MGSC) and Mouse Genome Analysis Group.
2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520-
562.

Pearson, W.R. 2000. Flexible sequence similarity searching with the FASTA3 program
package Methods Mol. Biol. 132:185-219.

PSL. 2006. PSL Alignment Format. Online documentation available at:
http://bioperl.org/wiki/PSL_alignment_format

Python. 2006. Open-source, interpreted, object-oriented language. http://www.python.org

Samet, H. 1990. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
New York.

UCSC. 2006. Online genome browser at: http://genome.ucsc.edu/

