Jackson shaker 2 Jackson, a new spontaneous mouse mutation in the *Ush1g* gene.

Leona Gagnon, Leah Davis* and Kenneth R Johnson

Source of Support: This research was supported by NIH/NCRR grant RR01183 to the Mouse Mutant Resource (M.T. Davisson, PI) and NIH/NIDCD grant DC04301 (K.R. Johnson, PI).

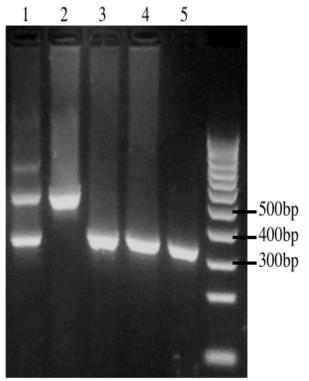
*Summer Student internship program supported by the National Science Foundation, the Barbara H. Sanford Endowed Scholarship Fund, and the Horace W. Goldsmith Foundation.

Mutation (allele) symbol: *js-2J* Mutation (allele) name: Jackson shaker 2 Jackson Gene symbol: *Ush1g* Strain of origin: B6.Cg- T^{2J} +/+qkCurrent strain name: B6(Cg)-*Ush1g^{js-2J}*/J Stock #: 006111 (jaxmice.jax.org) Phenotype categories: neurological/behavioral: motor capabilities/coordination/ movement anomalies/deafness/head bobbing

Origin and Description

The recessively inherited spontaneous mouse mutation Jackson shaker 2 Jackson (*js-2J*) was identified in 2002 in a research colony (B6.Cg- T^{2J} +/+qk) of Eva Eicher's. Mutant mice display head tossing and circling behavior indicative of vestibular dysfunction and hearing loss. Mutant mice were crossed to C57BL/6J and intercrossed. Mice that displayed the new circling behavior but not the *T* or *qk* phenotypes were selected for breeding, thus producing the current colony designated B6(Cg)-*Ush1g*^{*js-2J*/J. The colony is now maintained by brother/sister mating of a heterozygous female and a circling mutant male.}

A routine pathological screen¹ revealed no gross abnormalities in mutant mice as compared with a control littermate with the exception of hair cell loss observed in the inner ear. Four mutant mice and two littermate controls were assessed for hearing by auditory brainstem response (ABR). All mutants (12-54 days old) were deaf (no response at the highest stimulus presented, 100dB) while their control littermates retained good hearing (normal ABR threshold). A clinical eye exam revealed no abnormalities.


Genetic Analysis

An intercross was performed with CAST/Ei and 54 F2 animals were analyzed. Using our standard mapping protocol², the mutation was mapped to a region of chromosome 11 where the *Ush1g* gene is located.

A complementation test was performed between mice heterozygous for the new mutation in the *Ush1g* gene and Jackson shaker (*js*), a mouse mutation previously identified in the

Ush1g gene. The test-cross produced two litters with a total of 14 mice, five of which were mutant, thus confirming allelism.

To characterize the new mutation at the DNA level, PCR primers were designed to amplify each exon of the *Ush1g* gene including the splice donor and acceptor recognition sequences. Each PCR product was sequenced at The Jackson Laboratory core sequencing facility. Each exon's sequence was then compared to the mouse sequence publicly available, and a 155 base pair deletion was detected within exon 2 of the *Ush1g* gene (Fig. 1). The deletion induces a frame-shift coding for 51 altered amino acids and then a premature stop codon (Fig. 2).

Fig.1, Genotyping the *js-2J* mutation using primer sets 2p1F(CTCCCCTCCACAATATTCCAA) and 2p1R(TCAGGGTGCTGGACGTGA). A 155 bp deletion is contained within this region of exon 2 of the *Ush1g* gene. Lane1, heterozygous (+/*js-2J*) PCR products of 324 and 479bp, lane 2 wildtype (+/+) pcr product of 479bp, lanes 3-5 homozygous (*js-2J/js-2J*) PCR product of 324bp.

	+/+ cDNA sequence						T-DNA		
	+/+ cDNA sequence					js-2J/js-2J cDNA sequence			
1	AGTECTEECE GTEE				1			AATTCTCGGT	
41	CGTCCCGTCC AACT	TGGGCG	CCATGAATGA	CCAGTATCAC	41	CGTCCCGTCC	AACTTGGGCG	CCATGAATGA	CCAGTATCAC
81	CGGGCCGCCA GGGA	TGGCTA	TCTGGAACTC	CTCAAGGAGG	01	CGGGCCGCCA	GGGATGGCTA	TCTGGAACTC	CTCAAGGAGG
121	CCACCCGGAA GGAG	CTGAAT	GCCCCTGACG	AGGATGGCAT	121			GCCCCTGACG	
161	GACCCCGACT CTCT	GGGCTG	CCTACCATGG	CAACCTGGAG	161			CCTACCATGG	
201	TCTCTGCGCC TCAT	TGTGAG	CCGCGGGGGGT	GACCCGGATA	201	TCTCTGCGCC	TCATTGTGAG	CCGCGGGGGGT	GACCCGGATA
241	AGTGTGACAT CTGG	GGAAAC	ACACCCTTGC	ATCTGGCAGC	241	AGTGTGACAT	CTGGGGAAAC	ACACCCTTGC	ATCTGGCAGC
281	TTCCAATGGT CACC				201			gtg <mark>ggcaagc</mark>	
321	TTCGGGGCCA ACAT				321	GECETTEEGE	GAGGCAGAGC	GGCGCATCCG	CGAGTGCGCC
361	CGCCACTOGA CATO		ATGAAGGGCC		361	AAGATGCAGC	GCAAGCACCA	CGAGCGCATG	GAGCGGCGCT
401	CGTACGCTAT CTGG	IATTCCA	TEGEGGEEAA	GCAGAGCAGC	401	ACCGGCGCGA	GCTGGCCGAG	CGCTCCGACA	CTCTCAGCTT
441	CTCAACCCCA AGCT	GGTGGG	CAAGCTGAAG	GACAAGGCCT	441	CTCCAGCCTC	ACGTCCAGCA	CCCTGAGCCG	ACGGCTGCAG
481	TCCGCGAGGC AGAG	CGGCGC	ATCCGCGAGT	GCGCCAAGAT	401	CACATGACGC	TGGGCAGCCA	GCTGCCCTAC	TEGEAGGEEA
521	GCAGCGCAAG CACC	ACGAGC	GCATGGAGCG	GCGCTACCGG	521	CGCTGCACGG	TACGGCCAAG	GGCAAGGCCA	AGATCCAGAA
561	CGCGAGCTGG CCGA	GCGCTC	CGACACTCTC	AGCTTCTCCA	561	GAAGCTGGAG	AGGCGCAAGC	AGGGGGGCGA	GGGCACCTTC
601	GCCTCACGTC CAGC	ACCCTG	AGCCGACGGC	TGCAGCACAT	601	AAGGTCTCTG	AGGACGGGCG	CAAAAGCGTC	CGATCGCTCT
641	GACGCTGGGC AGCC	AGCTGC	CCTACTCGCA	GGCCACGCTG	641	CCGGCCTGCA	GTTGGGTAGT	GATGTGATGT	TTGTGCGCCA
681	CACGGTACGG CCAA	GGGCAA	GGCCAAGATC	CAGAAGAAGC	681	GGGCACCTAC	GCCAACCCCA	AGGAGTGGGG	CCGTGCCCCA
721	TGGAGAGGCG CAAG	CAGGGG	GGCGAGGGCA	CCTTCAAGGT	721	CTCAGGGACA	TGTTCCTCTC	GGACGAGGAC	AGCGTCTCCC
761	CTCTGAGGAC GGGC	GCAAAA	GCGTCCGATC	GCTCTCCGGC	761	GTGCCACACT	GGCTGCCGAG	CCTGCTCACT	CGGAGGTCAG
801	CTGCAGTTGG GTAG	TGATGT	GATGTTTGTG	CGCCAGGGCA	801	CACCGACTCA	GGCCACGACT	CTTTGTTTAC	CCGCCCCGGC
841	CCTACGCCAA CCCC	AAGGAG	TGGGGCCGTG	CCCCACTCAG	041	CTGGGTACCA	TGGTGTTTCG	AAGGAACTAT	GTGAGCAGCG
881	GGACATGTTC CTCT	CGGACG	AGGACAGCGT	CTCCCGTGCC	881	GGTTGCACGG	GCTGGGCCGA	GAGGACGGGG	GTTTGGATGG
921	ACACTGGCTG CCGA	GCCTGC	TCACTCGGAG	GTCAGCACCG	921	GGCAGGCACG	CCGCGGGGGTC	GGCTGCATAG	TTCCCCCAGC
961	ACTCAGGCCA CGAC	TCTTTG	TTTACCCGCC	CCGGCCTGGG	961	CTGGACGACG	ACAGCCTAGG	CAGTGCCAAC	AGCTTGCAGG
1001	TACCATGGTG TTTC	GAAGGA	ACTATGTGAG	CAGCGGGTTG	1001	ACCGCAGTTG	CGGGGAAGAG	CTGCCCTGGG	ATGAGCTAGA
1041	CACGGGCTGG GCCG	AGAGGA	CGGGGGGTTTG	GATGGGGCAG	1041			TGGAGCCCGA	
1081	GCACGCCGCG GGGT	CGGCTG	CATAGTTCCC	CCAGCCTGGA	1081	TTGGAGACCT	TCCTGGCCTC	GCTGCACATG	GAAGACTTTG
1121	CGACGACAGC CTAG	IGCAGTG	CCAACAGCTT	GCAGGACCGC	1121	CCTCTCTCCCT	GCGGCACGAG	AAGATTGACC	TGGAGGCTCT
1161	AGTTGCGGGG AAGA	GCTGCC	CTGGGATGAG	CTAGACTTGG	1161	GATGCTGTGC	TCTGACCTGG	ACCTGCGCAG	CATCAGCGTG
1201	OCTTOGATGA GGAC	CTGGAG	CCCGAGACCA	GCCCCTTGGA	1201	CCCCTGGGGC	CTCGGAAGAA	GATCCTGGGG	GCCGTGAGGA
1241	GACCTTCCTG GCCT	CGCTGC	ACATGGAAGA	CTTTGCCTCT	1241	GGCGCAGGCA	GGCTCTGGAG	CGACCCCTGG	CCCTGGAGGA
1281	CTCCTGCGGC ACGA	GAAGAT	TGACCTGGAG	GCTCTGATGC	1281			CCTCTCCTCA	
1021	TGTGCTCTGA CCTG	GACCTG	CGCAGCATCA	GCGTGCCCCT	1321	ATTGCAAGTT	GCCACAACCC	GCGGTGGGGC	CAAGAGGTCC

Fig2. A partial cDNA sequence (accession number NM_176847) of wildtype (+/+) and mutant (js-2J/js-2J) mice. Nucleotides highlighted in red indicate the 155 bases which are deleted in Jackson shaker-2J mice. The deletion is completely contained within exon 2 of the Ush1g gene and induces a translational frame shift (yellow nucleotides in the js-2J/js-2J sequence) and a premature stop codon (red nucleotides in the js-2J/js-2J sequence.)

Acknowledgements

We thank Linda Washburn for identification of the original Jackson shaker 2 Jackson mutant mouse, Sandra Gray for mouse colony development, Heping Yu and Chantal Longo-Guess for ABR analysis, Coleen Marden and Rod Bronson for pathological screening and Norm Hawes for clinical eye evaluation.

¹Standard Histology Protocol used in The Mouse Mutant Resource

For fixation of tissues, mice were deeply anesthetized with tribromoethanol (avertin) until they no longer displayed a withdrawal reflex in the hind limbs and then perfused intracardially with Bouin's fixative following a flush of the vasculature with saline solution. After soaking in Bouin's for one week to demineralize bones, tissues were dissected. Six segments of spine with axial muscles and spinal cord in situ, representing cervical, thoracic and lumbar spinal segments, were dissected. The brain was removed and sliced into 6 cross sectional pieces at the levels of olfactory lobes, frontal cortex, striatum, thalamus, midbrain, rostral and caudal medulla with cerebellum. Midsagittal slices of hind leg through the knees were prepared. Slices of basal skull through the pituitary and inner ears were taken. Both eyes, salivary glands and submandibular lymph node, trachea plus thyroid and sometimes parathyroid were removed and cassetted. A longitudinal slice of skin from the back was removed. The thymus, slices of lung, and a longitudinal slice of heart were cassetted. Similarly slices of liver through gall bladder, kidney with adrenal attached, pancreas and spleen were prepared. The stomach was sliced longitudinally to include both

squamous and glandular portions. Loops of small intestine from 3 levels and slices of large intestine and cecum were removed, as were slices of urinary bladder. The whole uterus, with ovaries attached, was taken. In males testes were sliced longitudinally. The accessory male organs including seminal vesicles, coagulating gland and prostate were removed en block. Altogether in most cases all tissue fit into a total of 10 cassettes. The cassettes were processed in an automatic tissue processor to dehydrate tissues which were then embedded in paraffin. Six micron sections were cut and stained with hematoxylin and eosin (H&E). Sections of brain and spinal cord in vertebral bones also were stained with luxol fast blue (LFB) for myelin and cresylecht violet (CV) for cellular detail.

²Standard Mapping Protocol used in The Mouse Mutant Resource

Linkage crosses

To map new mouse mutations we use CAST/Ei, an inbred strain of *Mus musculus castaneus*, as our standard linkage testing strain. In some cases, because of breeding difficulties or reduced phenotypic penetrance, we use other strains. An intercross of F1 hybrids is usually used to analyze linkage of recessive mutations and a backcross to analyze linkage of dominant mutations. Our goal is to produce enough informative mice from each mapping cross to test the recombinational products from at least 100 meioses.

DNA isolation

DNA is extracted from the frozen tail tips of mutant (homozygous) F2 mice or backcross progeny by a standard hot sodium hydroxide and Tris (Hot SHOT) procedure (Truett, et al., 2000) or from spleens using standard phenol extraction methods.

Polymerase chain reaction

PCR primer pairs (MapPairs, from Research Genetics, Huntsville, Ala., or from Integrated DNA Technologies, Coralville, Ia.) are used to type MIT microsatellite markers positioned throughout the genome. PCR reactions contain 20 ng genomic DNA in 10 ul containing 50 mM KCL, 10 mM Tris-HCL (pH 9.0 at 250C), and 0.01% Triton-X-100, 2.25 mM MgCl2, 100 nM of each primer (forward and reverse), 100 uM of each of four deoxyribonucleoside triphosphates, and 0.5 Units of Taq DNA polymerase (Amplitag from Applied Biosystems #N808-0145). Amplification consists of one cycle of denaturation at 940C for 3 minutes followed by 30 cycles, each consisting of 940C for 15 sec. denaturation, 550C for 2 minutes of annealing, and 720C for 2 minutes of extension. After the 30 cycles, the final product is extended for 7 minutes at 720C. The PCR products are run on 2.5% Metaphor agarose gels or 6% polyacrylamide (non-denaturing) gels. The gels are then stained with ethidium bromide, destained with distilled water, visualized on a UV light table, and photographed.

Pooled DNA Method (Taylor et al 1994).

In the case of an intercross, a pool of DNA prepared from 25-30 mutant F2 mice is compared with DNA from F1 hybrids. In the case of a backcross, a DNA pool from 25-30 mutant N2 mice is compared with a pool from 25-30 unaffected N2 mice. These DNA samples are typed by PCR for MIT markers located throughout the genome. For linked markers, the mutant strain allele will predominate in the DNA pool from mutant mice compared with controls. When a particular marker indicates linkage by analysis of the pooled sample, individual DNA samples are typed with that marker and additional markers in the same region to confirm linkage. Once a linkage is confirmed, additional DNAs from individual mice are typed to obtain a finer map position.

Linkage analysis

Gene order and recombination frequencies are calculated with the Map Manager computer program (Manley1993, 2001), a MacIntosh program for storage and analysis of genotyping data.

References

Manley KF (1993) A MacIntosh program for storage and analysis of experimental mapping data. Mamm Genome 4: 303-313.

Manly KF, Cudmore RH Jr, and Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome12: 930-932.

Taylor BA, Navin A, and Phillips SJ (1994) PCR-amplification of simple sequence repeat variants from pooled DNA samples for rapidly mapping new mutations of the mouse. Genomics 21: 626-32.

Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, and Warman ML(2000) Preparation of PCRquality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT). Biotechniques 29:52-54